Kazan Federal University Digital Repository

Degrees of Autostability Relative to Strong Constructivizations for Boolean Algebras

Show simple item record

dc.contributor.author Bazhenov N.
dc.date.accessioned 2018-09-19T20:03:35Z
dc.date.available 2018-09-19T20:03:35Z
dc.date.issued 2016
dc.identifier.issn 0002-5232
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/142502
dc.description.abstract © 2016 Springer Science+Business Media New YorkIt is proved that for every computable ordinal α, the Turing degree 0(α) is a degree of autostability of some computable Boolean algebra and is also a degree of autostability relative to strong constructivizations for some decidable Boolean algebra. It is shown that a Harrison Boolean algebra has no degree of autostability relative to strong constructivizations. It is stated that the index set of decidable Boolean algebras having degree of autostability relative to strong constuctivizations is ∏11-complete.
dc.relation.ispartofseries Algebra and Logic
dc.subject autostability
dc.subject autostability relative to strong constructivizations
dc.subject Boolean algebra
dc.subject degree of autostability
dc.subject degree of categoricity
dc.subject index set
dc.title Degrees of Autostability Relative to Strong Constructivizations for Boolean Algebras
dc.type Article in Press
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1
dc.source.id SCOPUS00025232-2016-SID84981194391


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics