Электронный архив

A supervised approach for SentiRuEval task on sentiment analysis of tweets about telecom and financial companies

Показать сокращенную информацию

dc.contributor.author Tutubalina E.
dc.contributor.author Zagulova M.
dc.contributor.author Ivanov V.
dc.contributor.author Malykh V.
dc.date.accessioned 2018-09-18T20:48:55Z
dc.date.available 2018-09-18T20:48:55Z
dc.date.issued 2015
dc.identifier.issn 2221-7932
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/142442
dc.description.abstract This paper describes a supervised approach for solving a task on sentiment analysis of tweets about banks and telecom operators. The task was articulated as a separate track in the Sentiment Evaluation for Russian (SentiRuEval-2015) initiative. The approach we proposed and evaluated is based on a Support Vector Machine model that classifies sentiment polarities of tweets. The set of features includes term frequency features, twitter-specific features and lexicon-based features. Given a domain, two types of sentiment lexicons were generated for feature extraction: (i) manually created lexicons, constructed from Pros and Cons reviews; (ii) automatically generated lexicons, based on pointwise mutual information between unigrams in a training set. In the paper we provide results of our method and compare them to results of other teams participated in the track. We achieved 35.2% of macro-averaged F-measure for banks and 44.77% for tweets about telecom operators. The method described in the paper is ranked second and fourth among 7 and 9 teams, respectively. The best SVM setting after tuning parameters of the classifier and error analysis with common types of errors are also presented in this paper.
dc.relation.ispartofseries Komp'juternaja Lingvistika i Intellektual'nye Tehnologii
dc.subject Sentiment analysis
dc.subject Sentirueval
dc.subject Social media
dc.subject Tweet sentiment classification
dc.subject Twitter
dc.title A supervised approach for SentiRuEval task on sentiment analysis of tweets about telecom and financial companies
dc.type Conference Paper
dc.relation.ispartofseries-issue 14
dc.relation.ispartofseries-volume 2
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 65
dc.source.id SCOPUS22217932-2015-2-14-SID84952765958


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика