Электронный архив

Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process

Показать сокращенную информацию

dc.contributor.author Sushko Y.
dc.contributor.author Novotarskyi S.
dc.contributor.author Körner R.
dc.contributor.author Vogt J.
dc.contributor.author Abdelaziz A.
dc.contributor.author Tetko I.
dc.date.accessioned 2018-09-18T20:36:08Z
dc.date.available 2018-09-18T20:36:08Z
dc.date.issued 2014
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/141581
dc.description.abstract © 2014 Sushko et al.; licensee Springer. Background: QSAR is an established and powerful method for cheap in silico assessment of physicochemical properties and biological activities of chemical compounds. However, QSAR models are rather complex mathematical constructs that cannot easily be interpreted. Medicinal chemists would benefit from practical guidance regarding which molecules to synthesize. Another possible approach is analysis of pairs of very similar molecules, so-called matched molecular pairs (MMPs). Such an approach allows identification of molecular transformations that affect particular activities (e.g. toxicity). In contrast to QSAR, chemical interpretation of these transformations is straightforward. Furthermore, such transformations can give medicinal chemists useful hints for the hit-to-lead optimization process. Results: The current study suggests a combination of QSAR and MMP approaches by finding MMP transformations based on QSAR predictions for large chemical datasets. The study shows that such an approach, referred to as prediction-driven MMP analysis, is a useful tool for medicinal chemists, allowing identification of large numbers of "interesting" transformations that can be used to drive the molecular optimization process. All the methodological developments have been implemented as software products available online as part of OCHEM (http://ochem.eu/). Conclusions: The prediction-driven MMPs methodology was exemplified by two use cases: modelling of aquatic toxicity and CYP3A4 inhibition. This approach helped us to interpret QSAR models and allowed identification of a number of "significant" molecular transformations that affect the desired properties. This can facilitate drug design as a part of molecular optimization process.
dc.subject Interpretation
dc.subject Inverse QSAR
dc.subject Matched molecular pairs
dc.subject Medicinal chemistry
dc.subject MMP
dc.subject Molecule optimization
dc.subject OCHEM
dc.subject Online chemical modelling environment
dc.subject QSAR
dc.title Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process
dc.type Article
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 6
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS-2014-6-1-SID84919928142


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика