Электронный архив

Dictionary and pattern-based recognition of organization names in Russian news texts

Показать сокращенную информацию

dc.contributor.author Solovyev V.
dc.contributor.author Gareev R.
dc.contributor.author Ivanov V.
dc.contributor.author Serebryakov S.
dc.contributor.author Vassilieva N.
dc.date.accessioned 2018-09-18T20:35:40Z
dc.date.available 2018-09-18T20:35:40Z
dc.date.issued 2013
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/141492
dc.description.abstract This paper describes a part of the event extraction system which has been developed in collaboration with HP Labs Russia. The domain of input texts is business news feeds. One of the most important event participant types is 'Organization'. This paper is focused on the problem of organization names recognition in Russian news texts. Two approaches have been implemented. The first is dictionary-based. We propose an algorithm to make a dictionary from a set of legal body full names gathered from a government registry. The main problems with the dictionary matching are incorrect stemming and significant fraction of ambiguous names among dictionary entries. The second recognition approach is based on usage of local context clues and internal name words. These words constitute patterns which are intrinsic to organization names. These patterns enable recognition of non-dictionary names. We propose an algorithm to derive such patterns from the original dictionary. © 2013 Hewlett-Packard Development Company, L.P.
dc.subject Knowledge-based event extraction
dc.subject Named entity recognition
dc.title Dictionary and pattern-based recognition of organization names in Russian news texts
dc.type Conference Paper
dc.relation.ispartofseries-issue 14
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS-2013-14-SID84874856232


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика