Показать сокращенную информацию

dc.contributor.author Frolov A.
dc.contributor.author Kartchevskiy E.
dc.date.accessioned 2018-09-18T20:35:26Z
dc.date.available 2018-09-18T20:35:26Z
dc.date.issued 2011
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/141450
dc.description.abstract The eigenvalue problem for generalized natural modes of an inhomogeneous optical fiber is formulated as a problem for Helmholtz equation with Reichardt condition at infinity in the cross-sectional plane. The generalized eigenvalues of this problem are the complex propagation constants on a logarithmic Reimann surface. The original problem is reduced to a spectral problem with compact integral operator. Theorem on spectrum localization is proved, and then it is proved that the set of all eigenvalues of the original problem can only be a set of isolated points on the Reimann surface, ant it also proved that each eigenvalue depends continuously on the frequency and can appear and disappear only at the boundary of the Reimann surface. The existence of the surface modes is proved. The collcation method for numerical calculation of the surface and leaky modes is proposed. The convergence of this method is investigated. Some results of the numerical experiments are presented. © 2011 IEEE.
dc.title Generalized modes of optical fiber
dc.type Conference Paper
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 67
dc.source.id SCOPUS-2011-SID84255161864


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика