Электронный архив

Visual data processing and action control using binary neural network

Показать сокращенную информацию

dc.contributor.author Kazantsev A.
dc.date.accessioned 2018-09-18T20:35:11Z
dc.date.available 2018-09-18T20:35:11Z
dc.date.issued 2007
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/141402
dc.description.abstract A new model of the brain-like neural network for visual data processing and action control is proposed. The neural network is built on discrete elements with binary input and output with memory cells. Optimization of the network is conducted using a natural selection process within the framework of an artificial life paradigm. The theoretical principles of the neuron and network structure construction have been tested and assured by real experiment using a computer program which models a population of virtual bacteria living and evolving in a restricted 2D area. Virtual bacteria act using binary visual information as input. Given the rules of survival and neural network mutation, new generations of bacteria form their brain using the neural networks of their successful predecessors. The proposed approach demonstrates the possibility of constructing a brain-like neural network based only on binary data processing. © 2007 IEEE.
dc.subject Artificial brain
dc.subject Artificial intelligence
dc.subject Artificial life
dc.subject Neural network
dc.subject Visual data processing
dc.title Visual data processing and action control using binary neural network
dc.type Conference Paper
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS-2007-SID46749130514


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика