Электронный архив

On Gakhov’s radius for some classes of functions

Показать сокращенную информацию

dc.contributor.author Aksent’ev L.
dc.contributor.author Akhmetova A.
dc.date.accessioned 2018-09-18T20:34:49Z
dc.date.available 2018-09-18T20:34:49Z
dc.date.issued 2015
dc.identifier.issn 1995-0802
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/141346
dc.description.abstract © 2015, Pleiades Publishing, Ltd. We introduce Gakhov’s radius as the radius of the largest circle rE, 0 < r ≤ 1, E = {ζ: |ζ| < 1}, inside of which the external inverse boundary value problem possesses unique solution. We find the Gakhov’s radius and convexity radius for several classes of functions, in particular, for the class of Nuzhin’s functions, the class of Zhukovskii’s airfoils, and the class of functions characterized by the inequality Re(ζf″(ζ)/f′(ζ)) ≥ A, A ≥ 1, ζ ∈ E.
dc.relation.ispartofseries Lobachevskii Journal of Mathematics
dc.subject external inverse boundary value problem
dc.subject Gakhov’s radius
dc.subject mapping radius
dc.subject uniqueness radius
dc.title On Gakhov’s radius for some classes of functions
dc.type Article
dc.relation.ispartofseries-issue 2
dc.relation.ispartofseries-volume 36
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 103
dc.source.id SCOPUS19950802-2015-36-2-SID84934992752


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика