Показать сокращенную информацию
dc.contributor.author | Zheltukhin V. | |
dc.contributor.author | Solov’ev S. | |
dc.contributor.author | Solov’ev P. | |
dc.contributor.author | Chebakova V. | |
dc.date.accessioned | 2018-09-18T20:34:42Z | |
dc.date.available | 2018-09-18T20:34:42Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/141327 | |
dc.description.abstract | © 2014, Pleiades Publishing, Ltd. A condition for the existence of a minimum eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for an ordinary differential equation is determined. The problem is approximated by a mesh scheme of the finite element method. The convergence of approximate solutions to exact ones is studied. Theoretical results are illustrated by numerical experiments for a model problem. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.subject | eigenvalue | |
dc.subject | finite element method | |
dc.subject | nonlinear eigenvalue problem | |
dc.subject | ordinary differential equation | |
dc.subject | positive eigenfunction | |
dc.subject | Sturm-Liouville problem | |
dc.title | Computation of the minimum eigenvalue for a nonlinear Sturm-Liouville problem | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 35 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 416 | |
dc.source.id | SCOPUS19950802-2014-35-4-SID84915760014 |