dc.contributor.author |
Zheltukhin V. |
|
dc.contributor.author |
Solov’ev S. |
|
dc.contributor.author |
Solov’ev P. |
|
dc.contributor.author |
Chebakova V. |
|
dc.date.accessioned |
2018-09-18T20:34:42Z |
|
dc.date.available |
2018-09-18T20:34:42Z |
|
dc.date.issued |
2014 |
|
dc.identifier.issn |
1995-0802 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/141327 |
|
dc.description.abstract |
© 2014, Pleiades Publishing, Ltd. A condition for the existence of a minimum eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for an ordinary differential equation is determined. The problem is approximated by a mesh scheme of the finite element method. The convergence of approximate solutions to exact ones is studied. Theoretical results are illustrated by numerical experiments for a model problem. |
|
dc.relation.ispartofseries |
Lobachevskii Journal of Mathematics |
|
dc.subject |
eigenvalue |
|
dc.subject |
finite element method |
|
dc.subject |
nonlinear eigenvalue problem |
|
dc.subject |
ordinary differential equation |
|
dc.subject |
positive eigenfunction |
|
dc.subject |
Sturm-Liouville problem |
|
dc.title |
Computation of the minimum eigenvalue for a nonlinear Sturm-Liouville problem |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
4 |
|
dc.relation.ispartofseries-volume |
35 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
416 |
|
dc.source.id |
SCOPUS19950802-2014-35-4-SID84915760014 |
|