Показать сокращенную информацию
dc.contributor.author | Avkhadiev F. | |
dc.contributor.author | Wirths K. | |
dc.date.accessioned | 2018-09-18T20:34:26Z | |
dc.date.available | 2018-09-18T20:34:26Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/141278 | |
dc.description.abstract | Using the Bessel functions we obtain several weighted Hardy inequalities with sharp constants. The following inequality for absolutely continuous functions is a simple example: If p and ν are positive numbers, and f: [0, 1] → ℝ satisfies the conditions f(0) = 0 and x1/2-p/2f′ ∈ L2(0, 1), then, where Fν (x) = √xJν(jν-1x1/(2ν)), Jν is the Bessel function of order ν and jν-1 is the first positive zero of Jν-1. In the general case we have to introduce constants z = λν(2/q) as the first positive root of the Lamb equation Jν(z) + qzJ′ν (z) = 0 and the functions z = z(q) that may be found as the solution of the initial values problem. © 2010 Pleiades Publishing, Ltd. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.subject | Bessel function | |
dc.subject | Hardy inequality | |
dc.subject | Lamb constant | |
dc.title | Weighted hardy inequalities with sharp constants | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 31 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1 | |
dc.source.id | SCOPUS19950802-2010-31-1-SID77950656538 |