dc.contributor.author |
Skryabin S. |
|
dc.date.accessioned |
2018-09-18T20:32:31Z |
|
dc.date.available |
2018-09-18T20:32:31Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
0075-4102 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/140956 |
|
dc.description.abstract |
Given an affine group scheme G of finite type over a field k, a homogeneous space for G is a scheme X over k containing a rational point x such that G operates "transitively" onX. Assuming that G operates on the right, we may identify X with the quotient KnG of G by the left action of the stabilizer K of x in G. The representation-theoretic significance of KnG is that the induction functor indG K from K-modules to G-modules factors as a category equivalence © Walter de Gruyter Berlin . New York 2010. |
|
dc.relation.ispartofseries |
Journal fur die Reine und Angewandte Mathematik |
|
dc.title |
Models of quasiprojective homogeneous spaces for Hopf algebras |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
643 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
201 |
|
dc.source.id |
SCOPUS00754102-2010-643-SID77956071513 |
|