Показать сокращенную информацию
dc.contributor.author | Stepanov R. | |
dc.date.accessioned | 2018-09-18T20:32:01Z | |
dc.date.available | 2018-09-18T20:32:01Z | |
dc.date.issued | 2006 | |
dc.identifier.issn | 0040-5779 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/140862 | |
dc.description.abstract | We study the 2N-component fermionic model on a hierarchical lattice and give explicit formulas for the renormalization-group transformation in the space of coefficients that determine a Grassmann-valued density of the free measure. We evaluate the inverse renormalization-group transformation. The de.nition of the renormalization-group fixed points reduces to a solution of a system of algebraic equations. We investigate solutions of this system for N = 1, 2, 3. For α = 1, we prove an analogue of the central limit theorem for fermionic 2N-component fields. We discover an interesting relation between renormalization-group transformations in bosonic and fermionic hierarchical models and show that one of these transformations is obtained from the other by replacing N with -N. © 2006 Springer Science+Business Media, Inc. | |
dc.relation.ispartofseries | Theoretical and Mathematical Physics | |
dc.subject | Hierarchical models | |
dc.subject | N-component fermionic fields | |
dc.subject | Renormalization group | |
dc.title | Renormalization-group transformation in a 2n-component fermionic hierarchical model | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 146 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 207 | |
dc.source.id | SCOPUS00405779-2006-146-2-SID32644450062 |