dc.contributor.author |
Stepanov R. |
|
dc.date.accessioned |
2018-09-18T20:32:01Z |
|
dc.date.available |
2018-09-18T20:32:01Z |
|
dc.date.issued |
2006 |
|
dc.identifier.issn |
0040-5779 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/140862 |
|
dc.description.abstract |
We study the 2N-component fermionic model on a hierarchical lattice and give explicit formulas for the renormalization-group transformation in the space of coefficients that determine a Grassmann-valued density of the free measure. We evaluate the inverse renormalization-group transformation. The de.nition of the renormalization-group fixed points reduces to a solution of a system of algebraic equations. We investigate solutions of this system for N = 1, 2, 3. For α = 1, we prove an analogue of the central limit theorem for fermionic 2N-component fields. We discover an interesting relation between renormalization-group transformations in bosonic and fermionic hierarchical models and show that one of these transformations is obtained from the other by replacing N with -N. © 2006 Springer Science+Business Media, Inc. |
|
dc.relation.ispartofseries |
Theoretical and Mathematical Physics |
|
dc.subject |
Hierarchical models |
|
dc.subject |
N-component fermionic fields |
|
dc.subject |
Renormalization group |
|
dc.title |
Renormalization-group transformation in a 2n-component fermionic hierarchical model |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
146 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
207 |
|
dc.source.id |
SCOPUS00405779-2006-146-2-SID32644450062 |
|