Показать сокращенную информацию
dc.contributor.author | Batyrshin I. | |
dc.date.accessioned | 2018-09-18T20:31:44Z | |
dc.date.available | 2018-09-18T20:31:44Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0037-4466 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/140812 | |
dc.description.abstract | © 2014, Pleiades Publishing, Ltd. We study the distinctions between Q-reducibility and m-reducibility on computably enumerable sets. We construct a noncomputable m-incomplete computably enumerable set B such that all computably enumerable sets A ≤QB satisfy A ≤mB. We prove that for every noncomputable computably enumerable set A there exists a computably enumerable set B such that A ≤QB but A ≰mB. We prove that for every simple set B there exists a computably enumerable set A such that A ≤QB but A ≰mB. The last result implies in particular that the Q-degree of every simple set contains infinitely many computably enumerable m-degrees. | |
dc.relation.ispartofseries | Siberian Mathematical Journal | |
dc.subject | computably enumerable set | |
dc.subject | m-reducibility | |
dc.subject | Q-reducibility | |
dc.subject | simple set | |
dc.title | Q-reducibility and m-reducibility on computably enumerable sets | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 6 | |
dc.relation.ispartofseries-volume | 55 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 995 | |
dc.source.id | SCOPUS00374466-2014-55-6-SID84919423115 |