dc.contributor.author |
Batyrshin I. |
|
dc.date.accessioned |
2018-09-18T20:31:44Z |
|
dc.date.available |
2018-09-18T20:31:44Z |
|
dc.date.issued |
2014 |
|
dc.identifier.issn |
0037-4466 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/140812 |
|
dc.description.abstract |
© 2014, Pleiades Publishing, Ltd. We study the distinctions between Q-reducibility and m-reducibility on computably enumerable sets. We construct a noncomputable m-incomplete computably enumerable set B such that all computably enumerable sets A ≤QB satisfy A ≤mB. We prove that for every noncomputable computably enumerable set A there exists a computably enumerable set B such that A ≤QB but A ≰mB. We prove that for every simple set B there exists a computably enumerable set A such that A ≤QB but A ≰mB. The last result implies in particular that the Q-degree of every simple set contains infinitely many computably enumerable m-degrees. |
|
dc.relation.ispartofseries |
Siberian Mathematical Journal |
|
dc.subject |
computably enumerable set |
|
dc.subject |
m-reducibility |
|
dc.subject |
Q-reducibility |
|
dc.subject |
simple set |
|
dc.title |
Q-reducibility and m-reducibility on computably enumerable sets |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
6 |
|
dc.relation.ispartofseries-volume |
55 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
995 |
|
dc.source.id |
SCOPUS00374466-2014-55-6-SID84919423115 |
|