Показать сокращенную информацию
dc.contributor.author | Avkhadiev F. | |
dc.contributor.author | Nasibullin R. | |
dc.date.accessioned | 2018-09-18T20:31:43Z | |
dc.date.available | 2018-09-18T20:31:43Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0037-4466 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/140810 | |
dc.description.abstract | We prove Hardy-type inequalities in spatial domains with finite inner radius, in particular, one-dimensional Lp-inequalities and their multidimensional analogs. The powers of the distance to the boundary of a set occur in the weight functions of spatial inequalities. It is demonstrated that the constant is sharp of the L1-inequalities in one-dimensional and multidimensional cases for convex domains. © 2014 Pleiades Publishing, Ltd. | |
dc.relation.ispartofseries | Siberian Mathematical Journal | |
dc.subject | distance to a boundary | |
dc.subject | finite inner radius | |
dc.subject | Hardy-type inequality | |
dc.title | Hardy-type inequalities in arbitrary domains with finite inner radius | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 55 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 191 | |
dc.source.id | SCOPUS00374466-2014-55-2-SID84899687651 |