dc.contributor.author |
Avkhadiev F. |
|
dc.contributor.author |
Nasibullin R. |
|
dc.date.accessioned |
2018-09-18T20:31:43Z |
|
dc.date.available |
2018-09-18T20:31:43Z |
|
dc.date.issued |
2014 |
|
dc.identifier.issn |
0037-4466 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/140810 |
|
dc.description.abstract |
We prove Hardy-type inequalities in spatial domains with finite inner radius, in particular, one-dimensional Lp-inequalities and their multidimensional analogs. The powers of the distance to the boundary of a set occur in the weight functions of spatial inequalities. It is demonstrated that the constant is sharp of the L1-inequalities in one-dimensional and multidimensional cases for convex domains. © 2014 Pleiades Publishing, Ltd. |
|
dc.relation.ispartofseries |
Siberian Mathematical Journal |
|
dc.subject |
distance to a boundary |
|
dc.subject |
finite inner radius |
|
dc.subject |
Hardy-type inequality |
|
dc.title |
Hardy-type inequalities in arbitrary domains with finite inner radius |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
55 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
191 |
|
dc.source.id |
SCOPUS00374466-2014-55-2-SID84899687651 |
|