dc.contributor.author |
Abyzov A. |
|
dc.date.accessioned |
2018-09-18T20:31:37Z |
|
dc.date.available |
2018-09-18T20:31:37Z |
|
dc.date.issued |
2009 |
|
dc.identifier.issn |
0037-4466 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/140795 |
|
dc.description.abstract |
Given an arbitrary quasiprojective right R-module P, we prove that every module in the category σ(P) is weakly regular if and only if every module in σ(M/I(M)) is lifting, where M is a generating object in σ(P). In particular, we describe the rings over which every right module is weakly regular. © 2009 Pleiades Publishing, Ltd. |
|
dc.relation.ispartofseries |
Siberian Mathematical Journal |
|
dc.subject |
Quasiprojective module |
|
dc.subject |
Semiartinian ring |
|
dc.subject |
SV-ring |
|
dc.subject |
Weakly regular module |
|
dc.title |
Generalized SV-modules |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
50 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
379 |
|
dc.source.id |
SCOPUS00374466-2009-50-3-SID67650459957 |
|