Показать сокращенную информацию
dc.contributor.author | Kalimullin I. | |
dc.date.accessioned | 2018-09-18T20:31:37Z | |
dc.date.available | 2018-09-18T20:31:37Z | |
dc.date.issued | 2009 | |
dc.identifier.issn | 0037-4466 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/140794 | |
dc.description.abstract | Given a countable algebraic structure B with no degree we find sufficient conditions for the existence of a countable structure A with the following properties: (1) for every isomorphic copy of A there is an isomorphic copy of A Turing reducible to the former; (2) there is no uniform effective procedure for generating a copy of A given a copy of B even having been enriched with an arbitrary finite tuple of constants. © 2009 Pleiades Publishing, Ltd. | |
dc.relation.ispartofseries | Siberian Mathematical Journal | |
dc.subject | Computability of an algebraic structure | |
dc.subject | Mass problem | |
dc.subject | Turing degree | |
dc.title | Uniform reducibility of representability problems for algebraic structures | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 50 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 265 | |
dc.source.id | SCOPUS00374466-2009-50-2-SID65349149975 |