Kazan Federal University Digital Repository

GTM-Based QSAR Models and Their Applicability Domains

Show simple item record

dc.contributor.author Gaspar H.
dc.contributor.author Baskin I.
dc.contributor.author Marcou G.
dc.contributor.author Horvath D.
dc.contributor.author Varnek A.
dc.date.accessioned 2018-09-18T20:27:37Z
dc.date.available 2018-09-18T20:27:37Z
dc.date.issued 2015
dc.identifier.issn 1868-1743
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/140111
dc.description.abstract © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. In this paper we demonstrate that Generative Topographic Mapping (GTM), a machine learning method traditionally used for data visualisation, can be efficiently applied to QSAR modelling using probability distribution functions (PDF) computed in the latent 2-dimensional space. Several different scenarios of the activity assessment were considered: (i) the "activity landscape" approach based on direct use of PDF, (ii) QSAR models involving GTM-generated on descriptors derived from PDF, and, (iii) the k-Nearest Neighbours approach in 2D latent space. Benchmarking calculations were performed on five different datasets: stability constants of metal cations Ca<sup>2+</sup>, Gd<sup>3+</sup> and Lu<sup>3+</sup> complexes with organic ligands in water, aqueous solubility and activity of thrombin inhibitors. It has been shown that the performance of GTM-based regression models is similar to that obtained with some popular machine-learning methods (random forest, k-NN, M5P regression tree and PLS) and ISIDA fragment descriptors. By comparing GTM activity landscapes built both on predicted and experimental activities, we may visually assess the model's performance and identify the areas in the chemical space corresponding to reliable predictions. The applicability domain used in this work is based on data likelihood. Its application has significantly improved the model performances for 4 out of 5 datasets.
dc.relation.ispartofseries Molecular Informatics
dc.subject Activity landscape
dc.subject Dimensionality reduction
dc.subject Generative topographic mapping
dc.subject GTM descriptors.
dc.subject QSAR
dc.title GTM-Based QSAR Models and Their Applicability Domains
dc.type Article
dc.relation.ispartofseries-issue 6-7
dc.relation.ispartofseries-volume 34
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 348
dc.source.id SCOPUS18681743-2015-34-6-7-SID84933512956


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics