Показать сокращенную информацию
dc.contributor.author | Avkhadiev F. | |
dc.contributor.author | Wirths K. | |
dc.date.accessioned | 2018-09-18T20:24:11Z | |
dc.date.available | 2018-09-18T20:24:11Z | |
dc.date.issued | 2009 | |
dc.identifier.issn | 1660-8046 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/139513 | |
dc.description.abstract | The aim of the present book is a unified representation of some recent results in geometric function theory together with a consideration of their historical sources. These results are concerned with functions f, holomorphic or meromorphic in a domain Ω in the extended complex plane ℂ̄. The only additional condition we impose on these functions is the condition that the range f(Ω) is contained in a given domain Π ⊂ ℂ̄. This fact will be denoted by f ∈ A (Ω Π). We shall describe how one may get estimates for the derivatives f(n)(z0) , n ∈ ℕ, f ∈ A(Ω, Π) dependent on the position of z0 in Ω and f(z0) in Π. © 2009 Birkhäuser Verlag AG. | |
dc.relation.ispartofseries | Frontiers in Mathematics | |
dc.title | Introduction | |
dc.type | Editorial | |
dc.relation.ispartofseries-volume | 2009 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1 | |
dc.source.id | SCOPUS16608046-2009-2009-SID64849106866 |