dc.contributor.author |
Avkhadiev F. |
|
dc.contributor.author |
Wirths K. |
|
dc.date.accessioned |
2018-09-18T20:24:11Z |
|
dc.date.available |
2018-09-18T20:24:11Z |
|
dc.date.issued |
2009 |
|
dc.identifier.issn |
1660-8046 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/139513 |
|
dc.description.abstract |
The aim of the present book is a unified representation of some recent results in geometric function theory together with a consideration of their historical sources. These results are concerned with functions f, holomorphic or meromorphic in a domain Ω in the extended complex plane ℂ̄. The only additional condition we impose on these functions is the condition that the range f(Ω) is contained in a given domain Π ⊂ ℂ̄. This fact will be denoted by f ∈ A (Ω Π). We shall describe how one may get estimates for the derivatives f(n)(z0) , n ∈ ℕ, f ∈ A(Ω, Π) dependent on the position of z0 in Ω and f(z0) in Π. © 2009 Birkhäuser Verlag AG. |
|
dc.relation.ispartofseries |
Frontiers in Mathematics |
|
dc.title |
Introduction |
|
dc.type |
Editorial |
|
dc.relation.ispartofseries-volume |
2009 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1 |
|
dc.source.id |
SCOPUS16608046-2009-2009-SID64849106866 |
|