dc.contributor.author |
Sawaya N. |
|
dc.contributor.author |
Huh J. |
|
dc.contributor.author |
Fujita T. |
|
dc.contributor.author |
Saikin S. |
|
dc.contributor.author |
Aspuru-Guzik A. |
|
dc.date.accessioned |
2018-09-18T20:23:06Z |
|
dc.date.available |
2018-09-18T20:23:06Z |
|
dc.date.issued |
2015 |
|
dc.identifier.issn |
1530-6984 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/139326 |
|
dc.description.abstract |
© 2015 American Chemical Society. Chlorosomes are efficient light-harvesting antennas containing up to hundreds of thousands of bacteriochlorophyll molecules. With massively parallel computer hardware, we use a nonperturbative stochastic Schrödinger equation, while including an atomistically derived spectral density, to study excitonic energy transfer in a realistically sized chlorosome model. We find that fast short-range delocalization leads to robust long-range transfer due to the antennae's concentric-roll structure. Additionally, we discover anomalous behavior arising from different initial conditions, and outline general considerations for simulating excitonic systems on the nanometer to micrometer scale. |
|
dc.relation.ispartofseries |
Nano Letters |
|
dc.subject |
Chlorosome |
|
dc.subject |
exciton |
|
dc.subject |
graphics processing unit |
|
dc.subject |
green sulfur bacteria |
|
dc.subject |
photosynthesis |
|
dc.subject |
spectral density |
|
dc.title |
Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
15 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1722 |
|
dc.source.id |
SCOPUS15306984-2015-15-3-SID84924529852 |
|