Электронный архив

Complex fractional differential operators geometrical phase transition and Riemann Conjecture

Показать сокращенную информацию

dc.contributor.author Le Méhauté A.
dc.contributor.author Tayurskii D.
dc.date.accessioned 2018-09-18T20:22:51Z
dc.date.available 2018-09-18T20:22:51Z
dc.date.issued 2013
dc.identifier.issn 1474-6670
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/139281
dc.description.abstract The authors show the existence a bi univocal application between Riemann zeta functions and dynamic processes under the control of Non Integer Differential Operator. They show that, in the Fourier space, Riemann zeta function is related to hyperbolic geodesics with angles at infinity determined by the non integer parts of the power laws. The authors assert that Riemann Conjecture can be considered as a geometrical phase transition based upon the cancelation of the geometrical symmetries at infinity. A quasi self similarity of the zeta functions is associated to the self similarity of the dynamics. This characteristic assures the validity of the Riemann conjecture. © 2013 IFAC.
dc.relation.ispartofseries IFAC Proceedings Volumes (IFAC-PapersOnline)
dc.subject Dynamic process
dc.subject Geometrical phase transition
dc.subject Riemann hypothesis
dc.title Complex fractional differential operators geometrical phase transition and Riemann Conjecture
dc.type Conference Paper
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 138
dc.source.id SCOPUS14746670-2013-SID84881061015


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика