Показать сокращенную информацию
dc.contributor.author | Hinkkanen A. | |
dc.contributor.author | Kayumov I. | |
dc.date.accessioned | 2018-09-18T20:22:39Z | |
dc.date.available | 2018-09-18T20:22:39Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 1446-7887 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/139246 | |
dc.description.abstract | Let f be a polynomial of degree n ≥ 2 with f(0)= 0 and f′(0)= 1. We prove that there is a critical point ζ of f with |f(ζ)/ζ| ≤ 1/2 provided that the critical points of f lie in the sector {re iθ:r > 0,|θ| ≤ π/6}, and |f(ζ)/ζ| < 2/3 if they lie in the union of the two rays {1+re±iθ:r ≥ 0}, where 0 < θ ≤ π /2. Copyright © 2010 Australian Mathematical Publishing Association Inc. | |
dc.relation.ispartofseries | Journal of the Australian Mathematical Society | |
dc.subject | Critical points | |
dc.subject | Polynomials | |
dc.subject | Smales problem | |
dc.title | Smales problem for critical points on certain two rays | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 88 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 183 | |
dc.source.id | SCOPUS14467887-2010-88-2-SID77952953258 |