Электронный архив

Smales problem for critical points on certain two rays

Показать сокращенную информацию

dc.contributor.author Hinkkanen A.
dc.contributor.author Kayumov I.
dc.date.accessioned 2018-09-18T20:22:39Z
dc.date.available 2018-09-18T20:22:39Z
dc.date.issued 2010
dc.identifier.issn 1446-7887
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/139246
dc.description.abstract Let f be a polynomial of degree n ≥ 2 with f(0)= 0 and f′(0)= 1. We prove that there is a critical point ζ of f with |f(ζ)/ζ| ≤ 1/2 provided that the critical points of f lie in the sector {re iθ:r > 0,|θ| ≤ π/6}, and |f(ζ)/ζ| < 2/3 if they lie in the union of the two rays {1+re±iθ:r ≥ 0}, where 0 < θ ≤ π /2. Copyright © 2010 Australian Mathematical Publishing Association Inc.
dc.relation.ispartofseries Journal of the Australian Mathematical Society
dc.subject Critical points
dc.subject Polynomials
dc.subject Smales problem
dc.title Smales problem for critical points on certain two rays
dc.type Article
dc.relation.ispartofseries-issue 2
dc.relation.ispartofseries-volume 88
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 183
dc.source.id SCOPUS14467887-2010-88-2-SID77952953258


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика