dc.contributor.author |
Hinkkanen A. |
|
dc.contributor.author |
Kayumov I. |
|
dc.date.accessioned |
2018-09-18T20:22:39Z |
|
dc.date.available |
2018-09-18T20:22:39Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
1446-7887 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/139246 |
|
dc.description.abstract |
Let f be a polynomial of degree n ≥ 2 with f(0)= 0 and f′(0)= 1. We prove that there is a critical point ζ of f with |f(ζ)/ζ| ≤ 1/2 provided that the critical points of f lie in the sector {re iθ:r > 0,|θ| ≤ π/6}, and |f(ζ)/ζ| < 2/3 if they lie in the union of the two rays {1+re±iθ:r ≥ 0}, where 0 < θ ≤ π /2. Copyright © 2010 Australian Mathematical Publishing Association Inc. |
|
dc.relation.ispartofseries |
Journal of the Australian Mathematical Society |
|
dc.subject |
Critical points |
|
dc.subject |
Polynomials |
|
dc.subject |
Smales problem |
|
dc.title |
Smales problem for critical points on certain two rays |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
88 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
183 |
|
dc.source.id |
SCOPUS14467887-2010-88-2-SID77952953258 |
|