Показать сокращенную информацию
dc.contributor.author | Skryabin S. | |
dc.date.accessioned | 2018-09-18T20:22:13Z | |
dc.date.available | 2018-09-18T20:22:13Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 1386-923X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/139167 | |
dc.description.abstract | For a Hopf algebra H and an H-module algebra A module-finite over its center it is proved that there is an equivalence relation on a subset Spec f A of the prime spectrum of A which exactly corresponds to the orbit relation in case of group actions. A linearly compact topologically H-simple H-module algebra L P (A) have been associated with each P ε Spec fA . When A is noetherian and H-semiprime, it is shown that A has a quasi-Frobenius classical quotient ring. © 2008 Springer Science+Business Media B.V. | |
dc.relation.ispartofseries | Algebras and Representation Theory | |
dc.subject | Hopf algebra orbits | |
dc.subject | Module algebras | |
dc.subject | Prime spectrum | |
dc.title | Hopf algebra orbits on the prime spectrum of a module algebra | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 13 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1 | |
dc.source.id | SCOPUS1386923X-2010-13-1-SID74849140262 |