dc.contributor.author |
Skryabin S. |
|
dc.date.accessioned |
2018-09-18T20:22:13Z |
|
dc.date.available |
2018-09-18T20:22:13Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
1386-923X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/139167 |
|
dc.description.abstract |
For a Hopf algebra H and an H-module algebra A module-finite over its center it is proved that there is an equivalence relation on a subset Spec f A of the prime spectrum of A which exactly corresponds to the orbit relation in case of group actions. A linearly compact topologically H-simple H-module algebra L P (A) have been associated with each P ε Spec fA . When A is noetherian and H-semiprime, it is shown that A has a quasi-Frobenius classical quotient ring. © 2008 Springer Science+Business Media B.V. |
|
dc.relation.ispartofseries |
Algebras and Representation Theory |
|
dc.subject |
Hopf algebra orbits |
|
dc.subject |
Module algebras |
|
dc.subject |
Prime spectrum |
|
dc.title |
Hopf algebra orbits on the prime spectrum of a module algebra |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
13 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1 |
|
dc.source.id |
SCOPUS1386923X-2010-13-1-SID74849140262 |
|