Показать сокращенную информацию
dc.contributor.author | Salekhova L. | |
dc.contributor.author | Chebotareva E. | |
dc.date.accessioned | 2018-09-18T20:21:37Z | |
dc.date.available | 2018-09-18T20:21:37Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1312-8876 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/139063 | |
dc.description.abstract | The aim of this paper is to prove the existence and uniqueness of solution for one class multiplicative-convolution equations in space A'+, where A'+ is the space of distributions on ℝ, which are boundary values (in the sense tempered distributions) of functions analytic in upper half-plane of complex plane. © 2014 Layla Salekhova and Elvira Chebotareva. | |
dc.relation.ispartofseries | International Journal of Mathematical Analysis | |
dc.subject | Carleman-Fourier transform | |
dc.subject | Convolution algebra | |
dc.subject | Convolution equation | |
dc.subject | Convolution module | |
dc.subject | Elementary solution | |
dc.subject | Multiplicative algebra | |
dc.title | On a class of multiplicative-convolution equations | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 9-12 | |
dc.relation.ispartofseries-volume | 8 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 495 | |
dc.source.id | SCOPUS13128876-2014-8-9-12-SID84897462291 |