dc.contributor.author |
Salekhova L. |
|
dc.contributor.author |
Chebotareva E. |
|
dc.date.accessioned |
2018-09-18T20:21:37Z |
|
dc.date.available |
2018-09-18T20:21:37Z |
|
dc.date.issued |
2014 |
|
dc.identifier.issn |
1312-8876 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/139063 |
|
dc.description.abstract |
The aim of this paper is to prove the existence and uniqueness of solution for one class multiplicative-convolution equations in space A'+, where A'+ is the space of distributions on ℝ, which are boundary values (in the sense tempered distributions) of functions analytic in upper half-plane of complex plane. © 2014 Layla Salekhova and Elvira Chebotareva. |
|
dc.relation.ispartofseries |
International Journal of Mathematical Analysis |
|
dc.subject |
Carleman-Fourier transform |
|
dc.subject |
Convolution algebra |
|
dc.subject |
Convolution equation |
|
dc.subject |
Convolution module |
|
dc.subject |
Elementary solution |
|
dc.subject |
Multiplicative algebra |
|
dc.title |
On a class of multiplicative-convolution equations |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
9-12 |
|
dc.relation.ispartofseries-volume |
8 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
495 |
|
dc.source.id |
SCOPUS13128876-2014-8-9-12-SID84897462291 |
|