Показать сокращенную информацию
dc.contributor.author | Kats B. | |
dc.date.accessioned | 2018-09-18T20:19:26Z | |
dc.date.available | 2018-09-18T20:19:26Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1072-3374 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/138714 | |
dc.description.abstract | We consider a nonrectifiable Jordan arc Γ on the complex plane ℂ with endpoints a1 and a2. The Riemann boundary-value problem on this arc is the problem of finding a function Φ(z) holomorphic in ℂ̄ \ Γ satisfying the equality, where Φ±(t) are the limit values of Φ(z) at a point t ∈ Γ \ {a1, a2} from the left and from the right, respectively. We introduce certain distributions with supports on nonrectifiable arc Γ that generalize the operation of weighted integration along this arc. Then we consider boundary behavior of the Cauchy transforms of these distributions, i.e., their convolutions with (2πiz)-1. As a result, we obtain a description of solutions of the Riemann boundary-value problem in terms of a new version of the metric dimension of the arc Γ, the so-called approximation dimension. It characterizes the rate of best approximation of Γ by polygonal lines. © 2013 Springer Science+Business Media New York. | |
dc.relation.ispartofseries | Journal of Mathematical Sciences (United States) | |
dc.title | Metric dimensions, generalized integrations, cauchy transform, and riemann boundary-value problem on nonrectifiable arcs | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 189 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 113 | |
dc.source.id | SCOPUS10723374-2013-189-1-SID84880603844 |