Kazan Federal University Digital Repository

Inner uniqueness theorem for second order linear elliptic equation with constant coefficients

Show simple item record

dc.contributor.author Bikchantaev I.
dc.date.accessioned 2018-09-18T20:17:22Z
dc.date.available 2018-09-18T20:17:22Z
dc.date.issued 2015
dc.identifier.issn 1066-369X
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/138345
dc.description.abstract © 2015, Allerton Press, Inc. We consider solution f to a linear elliptic differential equation of second order, and prove that it vanishes if zeros of f condense to two points along non-collinear rays. The requirement of non-collinearity of the rays is essential if the roots of the characteristic equation are distinct. In the case of equal roots of the characteristic equation this property is valid if and only if the rays do not belong to common straight line.
dc.relation.ispartofseries Russian Mathematics
dc.subject elliptic equation
dc.subject uniqueness theorem
dc.title Inner uniqueness theorem for second order linear elliptic equation with constant coefficients
dc.type Article
dc.relation.ispartofseries-issue 5
dc.relation.ispartofseries-volume 59
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 13
dc.source.id SCOPUS1066369X-2015-59-5-SID84928609052


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics