Показать сокращенную информацию
dc.contributor.author | Konnov I. | |
dc.date.accessioned | 2018-09-18T20:17:16Z | |
dc.date.available | 2018-09-18T20:17:16Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/138326 | |
dc.description.abstract | We solve a general optimization problem, where only approximation sequences are known instead of exact values of the goal function and feasible set. Under these conditions we suggest to utilize a penalty function method. We show that its convergence is attained for rather arbitrary means of approximation via suitable coercivity type conditions. © 2014 Allerton Press, Inc. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | approximation sequence | |
dc.subject | coercivity conditions | |
dc.subject | non-stationarity | |
dc.subject | optimization problem | |
dc.subject | penalty method | |
dc.title | Application of the penalty method to nonstationary approximation of an optimization problem | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 8 | |
dc.relation.ispartofseries-volume | 58 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 49 | |
dc.source.id | SCOPUS1066369X-2014-58-8-SID84904612524 |