Показать сокращенную информацию
dc.contributor.author | Arslanov M. | |
dc.date.accessioned | 2018-09-18T20:17:12Z | |
dc.date.available | 2018-09-18T20:17:12Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/138312 | |
dc.description.abstract | In this paper we investigate questions about the definability of classes of n-computably enumerable (c. e.) sets and degrees in the Ershov difference hierarchy. It is proved that the class of all c. e. sets is definable under the set inclusion ⊆ in all finite levels of the difference hierarchy. It is also proved the definability of all m-c. e. degrees in each higher level of the hierarchy. Besides, for each level n, n ≥ 2, of the hierarchy a definable non-trivial subset of n-c. e. degrees is established. © 2014 Allerton Press, Inc. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | and phrases: computably enumerable sets | |
dc.subject | definable relations | |
dc.subject | high degrees | |
dc.subject | major subsets | |
dc.subject | Turing degrees of unsolvability | |
dc.title | Definable relations in Turing degree structures | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 58 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 64 | |
dc.source.id | SCOPUS1066369X-2014-58-2-SID84897775555 |