Показать сокращенную информацию
dc.contributor.author | Kats B. | |
dc.contributor.author | Kats D. | |
dc.date.accessioned | 2018-09-18T20:17:02Z | |
dc.date.available | 2018-09-18T20:17:02Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/138279 | |
dc.description.abstract | Let γ be a simple Jordan arc in the complex plane. The Szegö function, by definition, is a holomorphic in C\γ function with a prescribed product of its boundary values on γ. The problem of finding the Segö function in the case of piecewise smooth γ was solved earlier. In this paper we study this problem for non-rectifiable arcs. The solution relies on properties of the Cauchy transform of certain distributions with the support on γ. © Allerton Press, Inc., 2012. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | Cauchy transform | |
dc.subject | Distribution | |
dc.subject | Non-rectifiable arc | |
dc.subject | Riemann boundary-value problem | |
dc.subject | Szegö function | |
dc.title | The szegö function on a non-rectifiable arc | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 56 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 9 | |
dc.source.id | SCOPUS1066369X-2012-56-4-SID84862737639 |