dc.contributor.author |
Kats B. |
|
dc.contributor.author |
Kats D. |
|
dc.date.accessioned |
2018-09-18T20:17:02Z |
|
dc.date.available |
2018-09-18T20:17:02Z |
|
dc.date.issued |
2012 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/138279 |
|
dc.description.abstract |
Let γ be a simple Jordan arc in the complex plane. The Szegö function, by definition, is a holomorphic in C\γ function with a prescribed product of its boundary values on γ. The problem of finding the Segö function in the case of piecewise smooth γ was solved earlier. In this paper we study this problem for non-rectifiable arcs. The solution relies on properties of the Cauchy transform of certain distributions with the support on γ. © Allerton Press, Inc., 2012. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
Cauchy transform |
|
dc.subject |
Distribution |
|
dc.subject |
Non-rectifiable arc |
|
dc.subject |
Riemann boundary-value problem |
|
dc.subject |
Szegö function |
|
dc.title |
The szegö function on a non-rectifiable arc |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
4 |
|
dc.relation.ispartofseries-volume |
56 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
9 |
|
dc.source.id |
SCOPUS1066369X-2012-56-4-SID84862737639 |
|