Показать сокращенную информацию
dc.contributor.author | Bikchentaev A. | |
dc.date.accessioned | 2018-09-18T20:17:00Z | |
dc.date.available | 2018-09-18T20:17:00Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/138274 | |
dc.description.abstract | We prove a Hermitian analog of the well-known operator triangle inequality for vonNeumann algebras. In the semifinite case we show that a block projection operator is a linear positive contraction on a wide class of solid spaces of Segal measurable operators. We describe some applications of the results. © 2012 Allerton Press, Inc. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | Block projection operator | |
dc.subject | Normal semifinite trace | |
dc.subject | Solid space of measurable operators | |
dc.subject | Triangle inequality | |
dc.subject | Von Neumann algebra | |
dc.title | Block projection operators in normed solid spaces of measurable operators | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 56 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 75 | |
dc.source.id | SCOPUS1066369X-2012-56-2-SID84862668387 |