Kazan Federal University Digital Repository

Block projection operators in normed solid spaces of measurable operators

Show simple item record

dc.contributor.author Bikchentaev A.
dc.date.accessioned 2018-09-18T20:17:00Z
dc.date.available 2018-09-18T20:17:00Z
dc.date.issued 2012
dc.identifier.issn 1066-369X
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/138274
dc.description.abstract We prove a Hermitian analog of the well-known operator triangle inequality for vonNeumann algebras. In the semifinite case we show that a block projection operator is a linear positive contraction on a wide class of solid spaces of Segal measurable operators. We describe some applications of the results. © 2012 Allerton Press, Inc.
dc.relation.ispartofseries Russian Mathematics
dc.subject Block projection operator
dc.subject Normal semifinite trace
dc.subject Solid space of measurable operators
dc.subject Triangle inequality
dc.subject Von Neumann algebra
dc.title Block projection operators in normed solid spaces of measurable operators
dc.type Article
dc.relation.ispartofseries-issue 2
dc.relation.ispartofseries-volume 56
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 75
dc.source.id SCOPUS1066369X-2012-56-2-SID84862668387


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics