dc.contributor.author |
Bikchentaev A. |
|
dc.date.accessioned |
2018-09-18T20:17:00Z |
|
dc.date.available |
2018-09-18T20:17:00Z |
|
dc.date.issued |
2012 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/138274 |
|
dc.description.abstract |
We prove a Hermitian analog of the well-known operator triangle inequality for vonNeumann algebras. In the semifinite case we show that a block projection operator is a linear positive contraction on a wide class of solid spaces of Segal measurable operators. We describe some applications of the results. © 2012 Allerton Press, Inc. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
Block projection operator |
|
dc.subject |
Normal semifinite trace |
|
dc.subject |
Solid space of measurable operators |
|
dc.subject |
Triangle inequality |
|
dc.subject |
Von Neumann algebra |
|
dc.title |
Block projection operators in normed solid spaces of measurable operators |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
56 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
75 |
|
dc.source.id |
SCOPUS1066369X-2012-56-2-SID84862668387 |
|