Показать сокращенную информацию
dc.contributor.author | Bochkarev V. | |
dc.contributor.author | Lerner E. | |
dc.date.accessioned | 2018-09-18T20:16:57Z | |
dc.date.available | 2018-09-18T20:16:57Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/138266 | |
dc.description.abstract | We study a model of generating words with independent unequal probabilities of letters. We prove that the probability p(r) of words of rank r has a power asymptotics. As distinct from a paper published earlier by B. Conrad andM.Mitzenmacher, we give a short proof, using elementary methods, and obtain an explicit formula for the degree of the power law. © Allerton Press, Inc., 2012. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | Functional equations | |
dc.subject | Monkey model | |
dc.subject | Order statistics | |
dc.subject | Pascal pyramid | |
dc.subject | Power laws | |
dc.subject | Recursive sequences | |
dc.subject | Zipf law | |
dc.title | The Zipf law for random texts with unequal letter probabilities and the pascal pyramid | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 12 | |
dc.relation.ispartofseries-volume | 56 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 25 | |
dc.source.id | SCOPUS1066369X-2012-56-12-SID84872231441 |