Kazan Federal University Digital Repository

A (3, 3)-homogeneous quantum logic with 18 atoms. i

Show simple item record

dc.contributor.author Sultanbekov F.
dc.date.accessioned 2018-09-18T20:16:57Z
dc.date.available 2018-09-18T20:16:57Z
dc.date.issued 2012
dc.identifier.issn 1066-369X
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/138265
dc.description.abstract A quantum logic is called (m, n)-homogeneous if any its atom is contained exactly in m maximal (with respect to inclusion) orthogonal sets of atoms (we call them blocks), and every block contains exactly n elements. We enumerate atoms by natural numbers. For each block {i, j, k} we use the abbreviation i-j-k. Every such logic has the following 7 initial blocks B 1,. ., B 7: 1-2-3, 1-4-5, 1-6-7, 2-8-9, 2-10-11, 3-12-13, and 3-14-15. For an 18-atom logic the arrangements of the rest atoms 16, 17, and 18 is important. We consider the case when they form a loop of order 4 in one of layers composed of initial blocks, for example, l 4: 3-14-15, 15-16-17, 17-18-13, and 13-12-3. We prove that there exist (up to isomorphism) only 5 such logics, and describe pure states and automorphism groups for them. © 2012 Allerton Press, Inc.
dc.relation.ispartofseries Russian Mathematics
dc.subject (3, 3)-homogeneous logic
dc.subject Atom
dc.subject Automorphism group
dc.subject Block
dc.subject Homogeneous quantumlogic
dc.subject Pure state
dc.subject Quantumlogic
dc.title A (3, 3)-homogeneous quantum logic with 18 atoms. i
dc.type Article
dc.relation.ispartofseries-issue 11
dc.relation.ispartofseries-volume 56
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 62
dc.source.id SCOPUS1066369X-2012-56-11-SID84869432251


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics