Показать сокращенную информацию
dc.contributor.author | Eryashkin M. | |
dc.date.accessioned | 2018-09-18T20:16:55Z | |
dc.date.available | 2018-09-18T20:16:55Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/138260 | |
dc.description.abstract | In this paper we extend classical results of the invariant theory of finite groups to the action of a finite-dimensional semisimple Hopf algebra H on a special algebra A, which is homomorphically mapped onto a commutative integral domain, and the kernel of this map contains no nonzero H-stable ideals. We prove that the algebra A is finitely generated as a module over a subalgebra of invariants, and the latter is finitely generated as a k-algebra. We give a counterexample to the finite generation of a non-semisimple Hopf algebra. © 2011 Allerton Press, Inc. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | Hopf algebras | |
dc.subject | invariant rings | |
dc.title | Invariants of the action of a semisimple finite-dimensional Hopf algebra on special algebras | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 8 | |
dc.relation.ispartofseries-volume | 55 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 11 | |
dc.source.id | SCOPUS1066369X-2011-55-8-SID80051699197 |