dc.contributor.author |
Eryashkin M. |
|
dc.date.accessioned |
2018-09-18T20:16:55Z |
|
dc.date.available |
2018-09-18T20:16:55Z |
|
dc.date.issued |
2011 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/138260 |
|
dc.description.abstract |
In this paper we extend classical results of the invariant theory of finite groups to the action of a finite-dimensional semisimple Hopf algebra H on a special algebra A, which is homomorphically mapped onto a commutative integral domain, and the kernel of this map contains no nonzero H-stable ideals. We prove that the algebra A is finitely generated as a module over a subalgebra of invariants, and the latter is finitely generated as a k-algebra. We give a counterexample to the finite generation of a non-semisimple Hopf algebra. © 2011 Allerton Press, Inc. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
Hopf algebras |
|
dc.subject |
invariant rings |
|
dc.title |
Invariants of the action of a semisimple finite-dimensional Hopf algebra on special algebras |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
8 |
|
dc.relation.ispartofseries-volume |
55 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
11 |
|
dc.source.id |
SCOPUS1066369X-2011-55-8-SID80051699197 |
|