Показать сокращенную информацию
dc.contributor.author | Tronin S. | |
dc.date.accessioned | 2018-09-18T20:16:47Z | |
dc.date.available | 2018-09-18T20:16:47Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/138236 | |
dc.description.abstract | We continue to develop the theory of multicategories over verbal categories. This theory includes both the usual category theory and the theory of operads, as well as a significant part of classical universal algebra. We introduce the notion of a natural multitransformation of multifunctors, owing to which categories of multifunctors from a multicategory to some other one turn into multicategories. In particular, any algebraic variety over a multicategory possesses a natural structure of a multicategory. Furthermore, we construct a multicategory analog of commacategories with properties similar to those in the category case. We define the notion of the center of a multicategory and show that centers of multicategories are commutative operads (introduced by us earlier) and only they. We prove that commutative FSet-operads coincide with commutative algebraic theories. © Allerton Press, Inc., 2011. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | Algebra over multicategory | |
dc.subject | Center | |
dc.subject | Comma-multicategory | |
dc.subject | Commutative algebraic theory | |
dc.subject | Commutative operad | |
dc.subject | Multicategory | |
dc.subject | Multifunctor | |
dc.subject | Natural multitransformation | |
dc.subject | Verbal category | |
dc.title | Natural multitransformations of multifunctors | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 11 | |
dc.relation.ispartofseries-volume | 55 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 49 | |
dc.source.id | SCOPUS1066369X-2011-55-11-SID84856240124 |