dc.contributor.author |
Tronin S. |
|
dc.date.accessioned |
2018-09-18T20:16:47Z |
|
dc.date.available |
2018-09-18T20:16:47Z |
|
dc.date.issued |
2011 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/138236 |
|
dc.description.abstract |
We continue to develop the theory of multicategories over verbal categories. This theory includes both the usual category theory and the theory of operads, as well as a significant part of classical universal algebra. We introduce the notion of a natural multitransformation of multifunctors, owing to which categories of multifunctors from a multicategory to some other one turn into multicategories. In particular, any algebraic variety over a multicategory possesses a natural structure of a multicategory. Furthermore, we construct a multicategory analog of commacategories with properties similar to those in the category case. We define the notion of the center of a multicategory and show that centers of multicategories are commutative operads (introduced by us earlier) and only they. We prove that commutative FSet-operads coincide with commutative algebraic theories. © Allerton Press, Inc., 2011. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
Algebra over multicategory |
|
dc.subject |
Center |
|
dc.subject |
Comma-multicategory |
|
dc.subject |
Commutative algebraic theory |
|
dc.subject |
Commutative operad |
|
dc.subject |
Multicategory |
|
dc.subject |
Multifunctor |
|
dc.subject |
Natural multitransformation |
|
dc.subject |
Verbal category |
|
dc.title |
Natural multitransformations of multifunctors |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
11 |
|
dc.relation.ispartofseries-volume |
55 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
49 |
|
dc.source.id |
SCOPUS1066369X-2011-55-11-SID84856240124 |
|