Показать сокращенную информацию
dc.contributor.author | Frolov A. | |
dc.date.accessioned | 2018-09-18T20:16:45Z | |
dc.date.available | 2018-09-18T20:16:45Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/138229 | |
dc.description.abstract | We prove that a nontrivial degree spectrum of the successor relation of either strongly η-like or non-η-like computable linear orderings is closed upwards in the class of all computably enumerable degrees. We also show that the degree spectrum contains 0 if and only if either it is trivial or it contains all computably enumerable degrees. © 2010 Allerton Press, Inc. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | computable presentations | |
dc.subject | linear orderings | |
dc.subject | successor relation | |
dc.subject | Turing degree spectra | |
dc.title | Presentations of the successor relation of computable linear ordering | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7 | |
dc.relation.ispartofseries-volume | 54 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 64 | |
dc.source.id | SCOPUS1066369X-2010-54-7-SID78649571513 |