dc.contributor.author |
Frolov A. |
|
dc.date.accessioned |
2018-09-18T20:16:45Z |
|
dc.date.available |
2018-09-18T20:16:45Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/138229 |
|
dc.description.abstract |
We prove that a nontrivial degree spectrum of the successor relation of either strongly η-like or non-η-like computable linear orderings is closed upwards in the class of all computably enumerable degrees. We also show that the degree spectrum contains 0 if and only if either it is trivial or it contains all computably enumerable degrees. © 2010 Allerton Press, Inc. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
computable presentations |
|
dc.subject |
linear orderings |
|
dc.subject |
successor relation |
|
dc.subject |
Turing degree spectra |
|
dc.title |
Presentations of the successor relation of computable linear ordering |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
7 |
|
dc.relation.ispartofseries-volume |
54 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
64 |
|
dc.source.id |
SCOPUS1066369X-2010-54-7-SID78649571513 |
|