dc.contributor.author |
Mikheeva A. |
|
dc.contributor.author |
Dautov R. |
|
dc.date.accessioned |
2018-09-18T20:16:43Z |
|
dc.date.available |
2018-09-18T20:16:43Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/138222 |
|
dc.description.abstract |
In this paper we propose a new technique for the stability analysis of the coincidence set of a solution to a parabolic variational inequality with an obstacle inside the domain. It is based on the reformulation of the initial inequality in the form of a parabolic initial boundary value problem with an exact penalty operator. © 2010 Allerton Press, Inc. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
capacity |
|
dc.subject |
coincidence set |
|
dc.subject |
obstacle problem |
|
dc.subject |
stability |
|
dc.subject |
variational inequality |
|
dc.title |
Stability of the coincidence set of a solution to a parabolic variational inequality with an obstacle |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
54 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
77 |
|
dc.source.id |
SCOPUS1066369X-2010-54-3-SID78649611680 |
|