dc.contributor.author |
Hoa D. |
|
dc.contributor.author |
Tikhonov O. |
|
dc.date.accessioned |
2018-09-18T20:16:42Z |
|
dc.date.available |
2018-09-18T20:16:42Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/138218 |
|
dc.description.abstract |
We prove that a real function is operator monotone (operator convex) if the corresponding monotonicity (convexity) inequalities are valid for some normal state on the algebra of all bounded operators in an infinite-dimensional Hilbert space. We describe the class of convex operator functions with respect to a given von Neumann algebra in dependence of types of direct summands in this algebra. We prove that if a function from ℝ+ into ℝ+ is monotone with respect to a von Neumann algebra, then it is also operator monotone in the sense of the natural order on the set of positive self-adjoint operators affiliated with this algebra. © 2010 Allerton Press, Inc. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
C*-algebra |
|
dc.subject |
operator convex function |
|
dc.subject |
operator monotone function |
|
dc.subject |
von Neumann algebra |
|
dc.title |
To the theory of operator monotone and operator convex functions |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
54 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
7 |
|
dc.source.id |
SCOPUS1066369X-2010-54-3-SID78649557208 |
|