dc.contributor.author |
Il'in S. |
|
dc.date.accessioned |
2018-09-18T20:16:39Z |
|
dc.date.available |
2018-09-18T20:16:39Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/138209 |
|
dc.description.abstract |
We prove that if the direct sum of a family of semimodules over a semiring S is an injective semimodule or if the direct product of a family of semimodules over S is a projective semimodule, then the cardinality of the subfamily consisting of all semimodules which are not modules is strictly less than the cardinality of S. As a consequence, we obtain semiring analogs of well-known characterizations of classical semisimple, quasi-Frobenius, and one-sided Noetherian rings. © 2010 Allerton Press, Inc. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
Injective semimodule |
|
dc.subject |
Projective semimodule |
|
dc.subject |
Semiring |
|
dc.title |
Direct sums of injective semimodules and direct products of projective semimodules over semirings |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
10 |
|
dc.relation.ispartofseries-volume |
54 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
27 |
|
dc.source.id |
SCOPUS1066369X-2010-54-10-SID78649539428 |
|