Показать сокращенную информацию
dc.contributor.author | Avkhadiev F. | |
dc.date.accessioned | 2018-09-18T20:16:26Z | |
dc.date.available | 2018-09-18T20:16:26Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1064-5632 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/138188 | |
dc.description.abstract | © 2014 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd. We give a geometric description of families of non-convex planar and spatial domains in which the following Hardy inequality holds: the Dirichlet integral of any smooth compactly supported function f on the domain is greater than or equal to one quarter of the integral of f2(x)/δ2(x), where δ(x) is the distance from x to the boundary of the domain. Our geometric description is based analytically on new one-dimensional Hardy-type inequalities with special weights and on new constants related to these inequalities and hypergeometric functions. | |
dc.relation.ispartofseries | Izvestiya Mathematics | |
dc.subject | Hardy inequalities | |
dc.subject | Hypergeometric functions | |
dc.subject | Non-convex domains | |
dc.subject | Torsional rigidity | |
dc.title | A geometric description of domains whose Hardy constant is equal to 1/4 | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 5 | |
dc.relation.ispartofseries-volume | 78 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 855 | |
dc.source.id | SCOPUS10645632-2014-78-5-SID84908530156 |